Gerhard Hummer – Theoretical Biophysics

Gerhard Hummer – Theoretical Biophysics

Our goal is to develop detailed and quantitative descriptions of key biomolecular processes, including energy conversion, molecular transport, signal transduction, and enzymatic catalysis.

Life relies on the intricate interactions of proteins, nucleic acids, lipids and other biomolecules. Our goal is to develop detailed and quantitative descriptions of key biomolecular processes, including energy conversion, molecular transport, signal transduction, and enzymatic catalysis. The growing understanding of the function of living organisms at the molecular level increasingly drives advances in modern medicine. Moreover, revealing the physical and chemical mechanisms exploited in biological systems guides the development of new technologies.

In our research we develop, implement, and use a broad range of computational and theoretical methods that allow us to explore the structure, stability, dynamics, and molecular functions of biomolecules and their complexes. We use high-performance computers and work in close collaboration with experimental groups that employ a wide variety of tools, from x-ray crystallography and electron microscopy to single-molecule fluorescence and force spectroscopy. Our computational and theoretical studies aid in the interpretation of increasingly complex measurements, and guide the design of future experiments.

Bridging between fundamental physics, chemistry and biology, we study biomolecular processes over a broad resolution range, from quantum mechanics to chemical kinetics, from atomistic descriptions of physical processes and chemical reactions in molecular dynamics simulations to highly coarse-grained models of the non-equilibrium operation of molecular machines and network descriptions of protein interactions. Focus areas of our research include the structure, motion, and function of dynamic supra-molecular assemblies; the function of proteins involved in bioenergetics; studies of proton transfer and pumping; the theory of single-molecule experiments, with particular emphasis on force spectroscopy; membrane channel and transporter function; peptide and protein folding; complex formation and ligand binding; reaction kinetics; hydrophobic effect and electrostatics; and the development of new methods for the characterisation of biomolecules and their assemblies using statistical mechanics and molecular simulation. In addition, we are also exploring the interface between biology and technology, concentrating on nanofluidics and energy conversion.

Selected Publications

Kreysing, J. P.; Heidari, M.; Zila, V.; Cruz-León, S.; Obarska-Kosinska, A.; Laketa, V.; Rohleder, L.; Welsch, S.; Köfinger, J.; Turoňová, B. et al.:
Passage of the HIV capsid cracks the nuclear pore.
Cell (2025)
Cook, A. S. I.; Chen, M.; Nguyen, T. N.; Cabezudo, A. C.; Khuu, G.; Rao, S.; Garcia, S. N.; Yang, M.; Iavarone, A. T.; Ren, X. et al.
Structural pathway for PI3-kinase regulation by VPS15 in autophagy.
Science (2025)
Johnson, A. G.; Mayer, M. L.; Schaefer, S. L.; McNamara-Bordewick, N. K.; Hummer, G.; Kranzusch, P. J.: 
Structure and assembly of a bacterial gasdermin pore.
Nature 628 (8008), pp. 657 - 663 (2024)
Rao, S.; Skulsuppaisarn, M.; Strong, L. M.; Ren, X.; Lazarou, M.; Hurley, J. H.; Hummer, G.: 
Three-step docking by WIPI2, ATG16L1, and ATG3 delivers LC3 to the phagophore.
Science Advances 10 (6), eadj8027 (2024)
Blanc, F. E. C.; Hummer, G.: 
Mechanism of proton-powered c-ring rotation in a mitochondrial ATP synthase.
Proceedings of the National Academy of Sciences 121 (11), e2314199121 (2024)
Cruz-León, S.; Majtner, T.; Hoffmann, P. C.; Kreysing, J. P.; Kehl, S.; Tuijtel, M.; Schaefer, S. L.; Geißler, K.; Beck, M.; Turoňová, B. et al.
High-confidence 3D template matching for cryo-electron tomography.
Nature Communications 15, 3992 (2024)
Pietrek, L. M.; Stelzl, L. S.; Hummer, G.
Hierarchical Assembly of Single-Stranded RNA.
Journal of Chemical Theory and Computation 20 (5), pp. 2246 - 2260 (2024)
Köfinger, J.; Hummer, G.: 
Encoding prior knowledge in ensemble refinement.
The Journal of Chemical Physics 160, 114111 (2024)
Yu, M.; Heidari, M.; Mikhaleva, S.; Tan, P. S.; Mingu, S.; Ruan, H.; Reinkemeier, C. D.; Obarska-Kosinska, A.; Siggel, M.; Beck, M. et al.: 
Visualizing the disordered nuclear transport machinery in situ.
Nature 617 (7959), pp. 162 - 169 (2023)
Jung, H.; Covino, R.; Arjun, A.; Leitold, C.; Dellago, C.; Bolhuis, P. G.; Hummer, G.: 
Machine-guided path sampling to discover mechanisms of molecular self-organization.
Nature Computational Science 3 (4), pp. 334 - 345 (2023)
Go to Editor View